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The unstable spectrum of swirling gas flows
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The asymptotic structure of the discrete spectrum of a compressible inviscid swirling
flow with arbitrary radial distributions of density, pressure and velocity is described
for disturbances with large wavenumbers. It is shown that discrete eigenmodes are
unstable when a criterion derived by Eckhoff & Storesletten (1978) is satisfied.
In general, these modes are characterized by a length scale of order |m|−3/4 where
|m| � 1 is the azimuthal wavenumber of the disturbance. They have a spatial structure
similar to the incompressible modes obtained by Leibovich & Stewartson (1983). In
the particular case of solid-body rotation with a positive gradient of entropy, the
unstable discrete spectrum contains modes which scale with |m|−1/2. If the modes are
localized near a solid boundary, they scale with |m|−2/3.

1. Introduction
In the present paper, we examine the temporal linear stability of swirling motions

of an inviscid compressible flow in adiabatic evolution. Neglecting the effect of
gravitational acceleration, the equilibrium (or base) flow is described in polar
cylindrical coordinates by its radial distributions of velocity V (r)eθ +W (r)ez, pressure
P (r), density R(r) and entropy S(r). Pressure and density are related through the
dynamical relation P ′/R = V 2/r (the prime denotes differentiation with respect to r),
and thermodynamic variables by the equation of state P = P (R, S). The local speed
of sound C(r) of the equilibrium flow is defined by C2 = (∂P/∂R)S . For instance,
in an ideal gas with constant ratio of specific heats γ , we have the usual relations:
S = ln(P/Rγ ) and C2 = γP/R.†

Various stability criteria have been derived in the literature for arbitrary radial
distributions of velocity, pressure and density fields. A review may be found in
Le Duc (2001). We focus our attention here on a criterion derived by Eckhoff &
Storesletten (1978): they proved that the flow is unstable if for some r > 0
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This is a sufficient condition for instability.
Eckhoff (1984) pointed out that if C2 = ∞ and R′ = 0, (1.1) is analogous to the

criterion derived by Leibovich & Stewartson (1983) for an incompressible swirling
flow. However, the methods used respectively by Eckhoff & Storesletten (the local

† The explicit form of the equation of state can be avoided in the stability analysis (Howard
1973); all results presented here are formally valid for any gas in isentropic evolution.
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theory) and by Leibovich & Stewartson (the modal approach) are different: the former
is associated with the continuous spectrum, the latter with the discrete spectrum. The
objective of the present paper is, in the case of swirling gas flows, to connect the two
approaches. In particular, we will show that unstable discrete modes exist if (1.1) is
satisfied.

After a brief review of relevant stability conditions (§ 2), the asymptotic structure
of the instability modes in a compressible swirling flow is described in § 3 and § 4.

2. Modal approach versus local theory
2.1. Sufficient conditions for stability

In the modal approach (a terminology which we prefer to the usual ‘normal’ modes
because the operators are generally non-normal), linear disturbances are sought as

[u(r), ip(r), ρ(r)]ei(mθ+kz−ωt), (2.1)

where, in a temporal analysis, m is integer, k real and ω =ωR +iωI complex. If ωI > 0
then the discrete spectrum contains unstable modes.

To shorten notation, we define Ω(r) = V/r the angular velocity,

∆(r) = mΩ + kW − ω (2.2)

the complex Doppler shifted frequency, and ∆′(r) = mΩ ′ +kW ′ its derivative. Also let

Φ(r) = 2Ω(2Ω + rΩ ′), N2(r) = rΩ2(R′/R − rΩ2/C2) (2.3)

be respectively the Rayleigh discriminant of the flow and, in analogy with stratified
flows, the square of the Brunt–Väıssälä frequency (here N 2 positive or negative).

Lalas (1975) and Warren (1975) proved independently that, if for some (m, k) the
flow is unstable (ωI > 0), then there exists some radius r such that†

ω2
I � K2(r), K2(r) =

(
2mΩ + 1

2
r∆′)2/

(m2 + k2r2) − N2 − Φ. (2.4)

A similar result was derived by Howard & Gupta (1962) for an incompressible
homogeneous fluid (N 2 = 0). The maximum over r of K2(r) provides an upper bound
for the growth rate, and if K2 � 0 everywhere, (2.4) implies that disturbances with
wavenumbers (m, k) are stable (ωI = 0). This is a sufficient condition for stability. For
instance, the flow is stable to axisymmetric disturbances (m = 0) if 1

4
W ′2 −N2 −Φ � 0

everywhere (Howard 1973). More generally, Lalas and Warren proved that the flow
is stable to any linear disturbance if 1

4
(W ′2 + r2Ω ′2) − N2 � 0 everywhere.

Important is the case where

∆′(r) = mΩ ′ + kW ′ = 0 (2.5)

everywhere, for which (2.4) leads to

ω2
I � Σ2(r), Σ2(r) = (2mΩ)2/(m2 + k2r2) − N2 − Φ. (2.6)

Condition (2.5) is ensured when W is uniform and m =0. In that case (2.6) shows
that the flow is stable to axisymmetric disturbances if

N 2 + Φ � 0 (2.7)

† The prefactor 1
4

on the right-hand side of inequality (3.7) in Lalas (1975) is erroneous.
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everywhere. When Ω is uniform, the flow is stable to planar disturbances (k = 0) if

N 2 � 0 (2.8)

everywhere. When both Ω and W are uniform, then (2.5) is satisfied for any (m, k), and
the corresponding disturbances are stable if N2 +(2Ωkr)2/(m2 +k2r2) � 0 everywhere.
Therefore, the unstable discrete spectrum is empty if N2 � 0 everywhere.

Finally, if Ω and W are not uniform and if there exists some r where (2.4) and
(2.5) hold, we can conclude that instability implies:

ω2
I � Ξ 2(r), Ξ 2(r) = (2ΩW ′)2/(r2Ω ′2 + W ′2) − N2 − Φ. (2.9)

Therefore if Ξ 2 � 0 everywhere, there exists no unstable mode characterized by (2.5).

2.2. Sufficient conditions for instability

Using a theory developed by Eckhoff (1981) and generalized by Lifschitz & Hameiri
(1991), Eckhoff & Storesletten (1978) derived sufficient conditions for instability for
perfect gas in swirling motions. Their method consists in looking for the response of
the flow to an initially localized disturbance. The disturbance is approximated by a
WKB expansion with leading term

[u(x, t), εp(x, t), ρ(x, t)]eiφ(x,t)/ε, 0 < ε � 1. (2.10)

Defining (ξθ , ξz) = (∂θφ, ∂zφ), Eckhoff & Storesletten demonstrated that the amplitudes
of (2.10) grow exponentially if, for some r , the two following conditions are satisfied
(details may be found in Le Duc 2001):

ξθΩ
′ + ξzW

′ = 0, (2.11)

(2ξθΩ)2
/(

ξ 2
θ + ξ 2

z r2
)

− N 2 − Φ > 0. (2.12)

Various cases may be identified. If W is uniform and Ω ′ �= 0, then (2.11) is satisfied
only for axisymmetric short-wave disturbances (ξθ = 0) and the flow is unstable if

N 2 + Φ < 0 (2.13)

somewhere (compressible Rayleigh’s criterion). If Ω is uniform and W ′ �= 0, then
(2.12) with ξz = 0 shows that instability arises whenever

N2 < 0 (2.14)

somewhere. Finally, if Ω and W are both uniform, then relation (2.11) is always
satisfied so that the flow is unstable if (2.12) holds somewhere, that is if for some r

N2 + (2Ωξzr)
2
/(

ξ 2
θ + ξ 2

z r2
)

< 0. (2.15)

The flow is therefore unstable when N2 < 0 somewhere.
Finally, if Ω ′ �= 0 and W ′ �= 0 in the flow, then (2.11) may be always satisfied and

provides a relation between ξθ and ξz. Replacing (2.11) in (2.12), the flow is unstable
if for some r , Ξ 2 > 0, where Ξ 2(r) is defined in (2.9). This is equivalent to (1.1). Other
criteria were derived by Eckhoff & Storesletten leading to algebraic growth. These
weaker instabilities are outside the scope of the present paper.

2.3. Discrete and continuous spectra

As already mentioned, Eckhoff (1984) pointed out that (1.1) corresponds in the
incompressible limit to the criterion derived by Leibovich & Stewartson (1983).
However, the local theory and the modal approach used respectively by Eckhoff &
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Storesletten and by Leibovich & Stewartson are quite different in nature. Indeed,
although powerful for deriving stability criteria, the local theory has its own
limitations: (i) it is restricted to short-wave disturbances; (ii) it gives no information
about the modal structure of the instability; (iii) the actual disturbance approximated
by (2.10) grows initially but may die out after a finite time. These restrictions
are essentially due to the fact that the exponential growth rate of the disturbance
amplitude is related to a point on the continuous (essential) spectrum (see Lebovitz &
Lifschitz 1992).

On the contrary, the modal approach yields information on the discrete
spectrum, for which unstable modes grow exponentially in the linear regime forever.
Furthermore, the structure of the eigenmodes can generally be computed. It provides
useful information for comparison with experiments or numerical results. However,
the mathematical analysis related to the modal approach is much more difficult
and generally restricted to flows with particular symmetries, such as swirling flows
discussed here.

In our previous work (Le Duc & Leblanc 1999), following a procedure outlined
by Bayly (1988), we showed how to construct discrete axisymmetric eigenmodes
associated with the compressible analogue of Rayleigh’s criterion for centrifugal
instability (2.13). But this work was restricted to the particular case W uniform and
m =0. In a recent paper, Sipp et al. (2005) described the asymptotic structure of modes
localized in the core of a vortex characterized by a negative gradient of density, but
their analysis was restricted to two-dimensional disturbances of a non-homogeneous
incompressible flow. In the rest of the paper, we extend these asymptotic analyses to
arbitrary radial distribution of density, pressure and velocity.

3. Asymptotic structure of the disturbances: the general case
3.1. The eigenvalue problem

With (2.1), the linearized equations may be written as (see for instance Warren 1975)

d(ru)

dr
− ∆′

∆
(ru) −

(
2mΩ

r∆
− rΩ2

C2

)
(ru) =

r∆
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(
1
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(
2mΩ
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C2

)
p =

R

r∆
(N2 + Φ − ∆2)(ru),

where u(r) and p(r) are the radial velocity and pressure disturbances. Equations
corresponding to an incompressible flow are recovered with C2 = ∞, with either
homogeneous density if R′ = 0 or inhomogeneous density if not.

With ϕ = ru/∆, we obtain ϕ′ − aϕ = bp and p′ + ap = cϕ where

a =

(
2mΩ

r∆
− rΩ2

C2

)
, b =

r

R

(
1

C2
− m2 + k2r2

r2∆2

)
, c =

R

r
(N 2 + Φ − ∆2).

By differentiation, the following second-order equation may be deduced:

ϕ′′ − (ln b)′ϕ′ + (a(ln b)′ − a′ − a2 − bc)ϕ = 0.

Introducing ψ =ϕ/b1/2, we finally obtain

ψ ′′ + Q(r; ω)ψ = 0, (3.1)

Q(r; ω) = 1
2
(ln b)′′ − 1

4
(ln b)′2 + a(ln b)′ − a′ − a2 − bc. (3.2)
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Boundary conditions for ψ(r) are the same as for radial velocity u(r), that is ψ = 0 on
the boundaries or at infinity. Possible singularities at the origin are avoided because
the instabilities presented here are localized at non-zero radii (condition (1.1) cannot
be satisfied at r = 0). Equation (3.1) forms an eigenvalue problem. It consists in
finding, for fixed (k, m), the complex values of ω (the eigenvalues) for which smooth
non-trivial solutions ψ(r) exist (the eigenfunctions).

We are interested in the behaviour of solutions with large wavenumbers: |m| � 1
and/or |k| � 1. It is thus convenient to introduce a small parameter ε such that
0 < ε � 1, and to define the following rescaled wavenumbers:

m̃ = εm, k̃ = εk. (3.3)

Both m̃ and k̃ are assumed of order unity; they may be chosen null separately in order
to consider axisymmetric (m̃ = 0) or planar (k̃ =0) disturbances. It is also convenient
to define the real-valued function

Λ(r) = m̃Ω + k̃W.

By construction, Λ(r) = O(1), and from definition (2.2), ∆(r) = ε−1Λ(r) − ω.
Each term of (3.2) may be expanded in powers of ε. At leading order, we obtain

Q(r; ω) = −m̃2 + k̃2r2

ε2r2

(
Σ2

∆2
+ 1

)
+ O(ε−1), (3.4)

where Σ2(r) is a term of order unity already defined in (2.6).

3.2. Boundary-layer approximation

From (3.4), it can be seen that as ε → 0, (3.1) is a singular eigenvalue problem. In
the limit ε = 0, it yields (Σ2 + ∆2)ψ =0. If for some r0 > 0, Σ2(r0) = −∆2(r0), then
the generalized solution ψ(r) = δ(r − r0) satisfies the boundary value problem. Let
us assume that Σ2(r0) > 0. Since by definition ω = ε−1Λ(r0) − ∆(r0), the generalized
unstable eigensolution has complex frequency:

ω0 = ε−1Λ0 + iΣ0, (3.5)

where Λ0 = Λ(r0) and the ‘growth rate’ Σ0 is the positive square root of Σ2(r0) defined
in (2.6). This is in agreement with the WKB results of Eckhoff & Storesletten given
on the left-hand side of (2.12). But such a generalized solution is neither smooth nor
square integrable and belongs to the continuous part of the spectrum. We shall now
use a boundary-layer approximation to construct smooth discrete eigenmodes.

We expect Σ0 to be an upper bound for the growth rate ωI of such modes. From
(2.4), this is ensured if ∆′(r0) = 0. Therefore in the rest of the paper, we assume that

Λ′
0 = m̃Ω ′

0 + k̃W ′
0 = 0, (3.6)

where Λ′
0 = Λ′(r0). This condition, consistent with (2.11), was deduced by Leibovich &

Stewartson using different arguments.
In order to construct boundary-layer solutions of (3.1) when ε � 1, which are

localized in the vicinity of r0 where Σ0 > 0 and Λ′
0 = 0, we set

r̃ = (r − r0)/ε
α1, ω̃ = (ω − ω0)/ε

α2, ψ̃(r̃) = ψ(r), (3.7)

where α1,2 are positive scaling parameters to be determined, r̃ the inner spatial variable,
and ω̃ the yet unknown correction to the complex eigenvalue ω0 = ε−1Λ0 + iΣ0.
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Expanding each term of Q(r; ω) in the vicinity of r0 and using (3.7), the eigenvalue
equation (3.1) may be written as d2ψ̃/dr̃2 + q̃(r̃; ω̃)ψ̃ = 0 with

q̃(r̃; ω̃) = 2iS0ω̃ε(2α1+α2−2) − iS0Λ
′′
0 r̃

2ε(4α1−3) + 2S0Σ
′
0r̃ε

(3α1−2)

+ 2iS0Γ0ε
(2α1−1) + S0Σ

′′
0 r̃2ε(4α1−2) + · · · . (3.8)

Here S0 = (m̃2 + r2
0 k̃

2)/(r2
0Σ0), and Γ0 is a constant term defined later (§ 4).

By construction, the boundary-layer approximation makes sense only if q̃(r̃; ω̃) =
O(1); furthermore, to remain an eigenvalue problem in terms of the inner variables
(r̃ , ω̃, ψ̃), the resulting equation must include a dependence on ω̃. This determines in
a unique way the scaling parameters α1 and α2. Obviously from (3.8), various com-
binations are possible, depending on whether the coefficients Λ′′

0, Σ ′
0, Σ ′′

0 , etc., vanish
or not. We first assume that Λ′′

0 �= 0. Cases where Λ is uniform (which implies that
Λ′ =Λ′′ = 0 everywhere) will be examined in § 4.

3.3. The Leibovich–Stewartson modes

In the general case, that is for arbitrary velocity profiles Ω(r) and W (r), the condition
(3.6) yields, for fixed (m̃, k̃), the location r0 of the mode. As we have assumed that
Λ′′

0 �= 0, the requirement that q̃(r̃; ω̃) = O(1) implies from (3.8) that

α1 = 3/4, α2 = 1/2, (3.9)

in agreement with Leibovich & Stewartson. The inner problem is then

d2ψ̃/dr̃2 + (2iS0ω̃ − iS0Λ
′′
0 r̃

2)ψ̃ = 0. (3.10)

Inner boundary conditions are ψ̃ → 0 when r̃ → ± ∞. Setting

λ = (4iS0Λ
′′
0)

1/2, x = r̃λ1/2, E = 2iS0ω̃/λ, f (x) = ψ̃(r̃),

then (3.10) yields the following eigenvalue problem:

d2f/dx2 +
(
E − 1

4
x2

)
f = 0, f (±∞) = 0. (3.11)

Non-trivial solutions that decay at infinity exist provided that the eigenvalues satisfy
E(n) = 1

2
+n where n= 0, 1, 2, . . . . Eigenfunctions are fn(x) = exp(− 1

4
x2)Hen(x), where

He0(x) = 1, He1(x) = x, He2(x) = x2 − 1, . . . are Hermite polynomials.
Since S0 > 0, then λ= (1 ± i)(2S0|Λ′′

0|)1/2 where the ‘+’ (resp. ‘−’) is taken if Λ′′
0 > 0

(resp. Λ′′
0 < 0). The rescaled correction to the complex frequency is therefore

ω̃(n) = (±1 − i)
(

1
2

+ n
)(

1
2
|Λ′′

0|/S0

)1/2
. (3.12)

From (3.5), (3.7), (3.9) and (3.12), we conclude that the complex frequency of unstable
modes has the following asymptotic discrete distribution when ε � 1:

ω(n) = ε−1Λ0 + iΣ0 + ε1/2(±1 − i)
(

1
2

+ n
)(

1
2
|Λ′′

0|/S0

)1/2
+ · · · . (3.13)

If desired, higher-order corrections may be computed following a formal procedure
described in Leibovich & Stewartson.

Thanks to (3.3) and (3.6), ω(n) may be expressed as a function of m instead of ε. For
instance, the leading term of the (real) frequency ε−1Λ0 is m(Ω0 −Ω ′

0W0/W ′
0), whereas

the growth rates reach, as |m| → ∞, the asymptotic value Σ0 given by the positive
square root of Ξ 2(r0) defined in (2.9). Therefore, the unstable discrete spectrum is
non-empty if Ξ 2 > 0 somewhere, an inequality equivalent to (1.1).
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Eigenfunctions are complex Gaussian multiplied by Hermite polynomials. The com-
pressible modes thus have a structure similar to the modes described by Leibovich &
Stewartson in the incompressible case. Note that the above analysis is also valid for
a non-homogeneous incompressible flow with radial density stratification if C2 = ∞
is formally taken.

4. The case of uniform angular or axial velocity distributions
4.1. Modes localized in the flow: Bayly’s scaling

In the previous section, we have constructed instability modes that are localized on
the radius r0 where Λ′

0 = 0. However, if Λ is uniform in space then the construction
of § 3.3 fails because the leading-order correction (3.12) to the complex frequency
vanishes (since Λ′′ = 0). Let us examine this case in detail. Λ is uniform if one of the
following conditions is fulfilled: (i) both Ω and W are uniform; (ii) Ω is uniform and
k = 0; (iii) W is uniform and m =0.

Since Λ′ =0 everywhere in each of these cases, it is clear that the radius r0 on
which the eigenmode is localized cannot be determined by condition (3.6) as for
the Leibovich–Stewartson modes. For fixed (m̃, k̃) however, there exists a non-zero
radius r0 on which Σ(r) defined in (2.6) reaches its maximum value Σ0. If the flow
is unbounded, then this maximum is necessarily quadratic, that is such that Σ ′

0 = 0
and Σ ′′

0 < 0. If however the flow is bounded, the maximum may be reached inside the
flow, or at a boundary. In the former case the maximum is quadratic, but in the latter
case the maximum is generally such that Σ ′

0 �= 0 on the boundary.
We first consider the case of quadratic maxima: we suppose that there exists r0 > 0

inside the flow where Σ0 > 0, Σ ′
0 = 0 and Σ ′′

0 < 0. Then (3.8) with Λ′′
0 = 0 shows that

the correct scaling of the inner variables (3.7) is

α1 = 1/2, α2 = 1. (4.1)

This scaling was discovered by Bayly (1988) for incompressible centrifugal instability.
In case (i) where both Ω and W are uniform, the inner problem is

d2ψ̃/dr̃2 + (2iS0(ω̃ + Γ0) + S0Σ
′′
0 r̃2)ψ̃ = 0, (4.2)

where S0 = (m̃2 + r2
0 k̃

2)/(r2
0Σ0) and Γ0 is a constant term defined as

Γ0 =
m̃Ω

S0Σ0

(
2k̃2

m̃2 + k̃2r2
0

+
2Ω2

C2
0

− R′
0

r0R0

)
. (4.3)

The inner eigenvalue problem (4.2) may be put in the standard form (3.11) by the
following change of variables:

λ = (−4S0Σ
′′
0 )1/2, x = r̃λ1/2, E = 2iS0(ω̃ + Γ0)/λ, f (x) = ψ̃(r̃).

We recall that the eigenvalues of (3.11) are E(n) = 1
2

+ n, and therefore

ω̃(n) = −Γ0 − i
(

1
2

+ n
)
(−Σ ′′

0 /S0)
1/2. (4.4)

From (3.5), (3.7), (4.1) and (4.4), we conclude that the eigenvalues of unstable
discrete modes have, when ε � 1, the following asymptotic behaviour:

ω
(n)
R = ε−1Λ0 − εΓ0 + · · · , ω

(n)
I = Σ0 − ε

(
1
2

+ n
)
(−Σ ′′

0 /S0)
1/2 + · · · . (4.5)

Here Λ0 = m̃Ω + k̃W . For fixed ε, the most amplified eigenmode corresponds to n= 0
and is a Gaussian centred on r0.
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From (2.3), (2.6) and (3.3), the asymptotic growth rate Σ0 for large wavenumbers
is the positive square root of −N2

0 − (2Ωkr0)
2/(m2 + k2r2

0 ), in agreement with (2.15)
from the theory of Echkoff & Storesletten. Planar disturbances (k =0) are the most
amplified and the flow is unstable if N 2 < 0 somewhere. Together with the results of
§ 2.1, we can conclude that the discrete spectrum of a swirling compressible flow with
uniform angular and axial velocities is stable if and only if N 2 � 0 everywhere. Since
N 2 = −rΩ2S ′/γ in a perfect gas, then if Ω and W are uniform, the flow is unstable
if and only if its entropy S(r) increases somewhere.

The accuracy of our asymptotic results may be checked thanks to a semi-circle
theorem by Fung (1983). He considers the stability of an incompressible flow in
solid-body rotation (Ω uniform, W =0) with non-uniform density (R′ �= 0). With our
notation, Fung proved that the complex frequency of two-dimensional disturbances
(k =0) is such that (

ωR − 1
2
mΩ

)2
+ ω2

I =
(

1
2
mΩ

)2
. (4.6)

Our results may be applied to this case if C2 = ∞. From (2.3), N 2 = rΩ2R′/R, so that
the flow is unstable if and only if there exists some r0 such that Σ2

0 = −N 2
0 > 0 is

positive, that is if and only if R′
0 < 0. From (4.3) with k̃ = 0, we have Γ0 = m̃Σ2

0/Ω , so
that (4.5) yields in the present case, when |m| � 1

ω
(n)
R = mΩ − Σ2

0/(mΩ) + · · · , ω
(n)
I = Σ0 − |m|−1

(
1
2

+ n
)(

−r2
0Σ0Σ

′′
0

)1/2
+ · · · .

Fung’s equality (4.6) is satisfied with an error of order |m|−1. Modes with similar
structure have been described by Sipp et al. (2005) in the core of a vortex where the
angular velocity is locally uniform.

We now turn to the case (ii) where Ω is uniform but W ′ �= 0. Λ is uniform for
planar disturbances (k̃ = 0). The modes have the same structure as those described by
(4.5). In particular, they grow exponentially if N 2 < 0 somewhere, in agreement with
(2.14). Together with the necessary condition (2.8), we can conclude that the flow is
stable with respect to planar discrete eigenmodes if and only if N 2 � 0 everywhere.
However, since the axial velocity W is not uniform, nothing can be concluded for
three-dimensional disturbances, except if there exists some r0 on which W ′

0 = 0. In
that case, condition (3.6) is locally satisfied and the corresponding modes have a
structure similar to those described by (3.13). However it may be shown that these
three-dimensional modes are less amplified than planar modes.

We finally turn to case (iii) where Ω ′ �= 0 and W is uniform. In that case Λ is uniform
for axisymmetric disturbances (m̃= 0). This case corresponds to the compressible
counterpart of Rayleigh’s criterion for centrifugal instability. It has already been
described in our previous work (Le Duc & Leblanc 1999): when |k| � 1, the complex
frequencies of unstable eigenmodes behave as

ω(n) = kW + iΣ0 − i|k|−1
(

1
2

+ n
)
(−Σ0Σ

′′
0 )1/2 + · · · ,

the flow being unstable if Σ2
0 = −N 2

0 − Φ0 > 0. Together with Howard’s criterion (2.7),
we can conclude that the flow is stable to axisymmetric disturbances if and only if
N2 + Φ � 0 everywhere.

4.2. Modes localized on a solid boundary: Reid’s scaling

In § 4.1, we have examined in detail the various cases for which the Leibovich–
Stewartson scaling (3.9) does not hold, namely when Λ is uniform. In these cases,
we have seen that the instability modes are localized where the asymptotic growth
rate Σ(r) reaches its maximum Σ0. The asymptotic structure of the eigenmodes has
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been constructed with the assumption that for fixed (m̃, k̃), a quadratic maximum is
reached on r0, that is Σ ′

0 = 0 and Σ ′′
0 < 0. Such a maximum can always be found in

an unbounded flow. However, if the flow is contained inside cylindrical boundaries,
the maximum of Σ(r) may be reached on the inner or the outer boundaries so that
Σ ′

0 �= 0 there. Thus the analysis of § 4.1 fails in this case.
We consider for simplicity a flow in solid-body rotation (Ω uniform and W = 0)

perturbed by planar disturbances (k̃ =0). For solid-body rotation, we obtain from (2.3)
and (2.6) Σ2 = −N 2. Therefore if the entropy of the base flow increases monotonically,
the maximum of Σ(r) is reached on the outer boundary (say r0) where Σ ′

0 > 0. (The
case where Σ ′

0 < 0 on the inner boundary may be solved in a similar way.)
Recall that we still consider situations where Λ is uniform so that Λ′′

0 = 0 in (3.8);
the correct scaling of the inner variables (3.7) is now

α1 = α2 = 2/3.

This is the scaling first discovered by Reid (1960) for centrifugal instability of Couette
flow in the narrow-gap approximation. With that scaling, the inner problem is

d2ψ̃/dr̃2 + (2iS0ω̃ + 2S0Σ
′
0r̃)ψ̃ = 0,

where S0 = m̃2/(r2
0Σ0) here. In terms of the inner variables, the outer boundary

corresponds to r̃ = 0, the flow domain being such that r̃ < 0. Therefore, boundary
conditions are ψ̃ → 0 as r̃ → −∞ and ψ̃ = 0 on r̃ = 0. Setting

λ = (2S0Σ
′
0)

2/3, x = −r̃λ1/2, E = 2iS0ω̃/λ, f (x) = ψ̃(r̃),

we obtain the following eigenvalue problem:

d2f/dx2 + (E − x)f = 0, f (0) = f (+∞) = 0.

Solutions are Airy functions fn(x) = Ai(x − E(n)) and the boundary condition at
x = 0 gives the eigenvalue relation Ai(−E(n)) = 0. The zeros of the Airy function
must be computed numerically. The first zeros are approximately E(0) ≈ 2.33811,
E(1) ≈ 4.08795, E(2) ≈ 5.52056, . . . . As a result, when |m| � 1, the complex frequency
of the corresponding unstable modes behaves as

ω(n) = mΩ + iΣ0 − 1
2
i|m|−2/3E(n)

(
4r2

0Σ0Σ
′2
0

)1/3
+ · · · .

Every other cases considered in § 4.1 may be described in a similar way. For instance
it may be shown that for centrifugal instability (W uniform, m = 0), the eigenvalues
of those boundary modes are, when |k| � 1

ω(n) = kW + iΣ0 − 1
2
i|k|−2/3E(n)

(
4Σ0Σ

′2
0

)1/3
+ · · · .

This result is consistent with numerical computations reported in Le Duc & Leblanc
(1999) (see also Le Duc 2001). Indeed, we observed in such a case that, as the
wavenumber k increases, the eigenmodes flatten near the boundary and their spatial
scale is of order |k|−2/3 (no explanation had been given). The same result has been
obtained in a different manner by Billant & Gallaire (2005).

5. Summary
The asymptotic structure of the discrete eigenmodes associated with compressible

swirling flows with velocity V (r)eθ +W (r)ez, density R(r), and speed of sound C(r) has
been described for disturbances with large wavenumbers. It has been shown that such
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disturbances are unstable when the local criterion of Eckhoff & Storesletten (1978) is
satisfied: the discrete unstable spectrum is non-empty if (1.1) holds somewhere.

In the general case where V/r and W are not uniform, this provides a sufficient
condition for instability. Compressible eigenmodes have a structure similar to the
structure discovered by Leibovich & Stewartson (1983) in the incompressible case:
they are centred on the points where m(V/r)′ +kW ′ = 0 and their characteristic length
scale is of order |m|−3/4, where m and k are the azimuthal and axial wavenumbers.

Results differ for uniform angular or axial velocity distributions. If W is uniform,
thanks to a criterion by Howard (1973), (1.1) becomes a necessary and sufficient
condition for instability with respect to axisymmetric disturbances: this is Rayleigh’s
centrifugal instability criterion for compressible flows. If both W and V/r =Ω are
uniform, thanks to work by Lalas (1975) and Warren (1975), then we can conclude
that the discrete spectrum is unstable if and only if R′/R − rΩ2/C2 < 0 for some
r > 0. For a perfect gas, this shows that the flow is unstable if and only if the entropy
increases somewhere. In a non-homogeneous incompressible rotating flow, instability
arises if density decreases somewhere. Such a mechanism has been recently identified
by Sipp et al. (2005). We have shown that instability modes have a different structure,
depending on whether they are localized off or on the possible boundaries. They scale
with |m|−1/2 in the former case, and with |m|−2/3 in the latter. For solid-body rotation,
we also proved that the most unstable large-wavenumber disturbances are planar.

From a mathematical point of view, we have seen that the local theory yields the
asymptotic value of the discrete eigenfrequencies, as |m| and/or |k| → ∞. Therefore,
the points of the continuous spectrum described by the local theory are accumulation
points for the discrete spectrum. One may wonder if this is generally true. The answer
is at present not known.
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of their manuscript and for mentioning to us the important work by Reid (1960).
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